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Abstract For many organisms, searching for relevant targets such as food or mates entails

active, strategic sampling of the environment. Finding odorous targets may be the most ancient

search problem that motile organisms evolved to solve. While chemosensory navigation has been

well characterized in microorganisms and invertebrates, spatial olfaction in vertebrates is poorly

understood. We have established an olfactory search assay in which freely moving mice navigate

noisy concentration gradients of airborne odor. Mice solve this task using concentration gradient

cues and do not require stereo olfaction for performance. During task performance, respiration and

nose movement are synchronized with tens of milliseconds precision. This synchrony is present

during trials and largely absent during inter-trial intervals, suggesting that sniff-synchronized nose

movement is a strategic behavioral state rather than simply a constant accompaniment to fast

breathing. To reveal the spatiotemporal structure of these active sensing movements, we used

machine learning methods to parse motion trajectories into elementary movement motifs. Motifs

fall into two clusters, which correspond to investigation and approach states. Investigation motifs

lock precisely to sniffing, such that the individual motifs preferentially occur at specific phases of

the sniff cycle. The allocentric structure of investigation and approach indicates an advantage to

sampling both sides of the sharpest part of the odor gradient, consistent with a serial-sniff strategy

for gradient sensing. This work clarifies sensorimotor strategies for mouse olfactory search and

guides ongoing work into the underlying neural mechanisms.

Introduction
Sensory observations are often made in concert with movements (Ahissar and Assa, 2016; Gib-

son, 1966). During active search behavior, animals make sampling movements in order to extract

relevant sensory information from the environment (Gibson, 1962; Schroeder et al., 2010). Sam-

pling behavior is flexible and can be customized for the problem the animal is trying to solve

(Kleinfeld et al., 2006; Yarbus, 1967). In the brain, sensory and motor systems interact extensively

(Andersen and Mountcastle, 1983; Duhamel et al., 1992; McGinley et al., 2015; Musall et al.,

2019; Niell and Stryker, 2010; Poulet and Hedwig, 2006; Sommer and Wurtz, 2002;

Stringer et al., 2019), which reflects the importance of interpreting self-induced stimulus dynamics

(Sommer and Wurtz, 2008; Sperry, 1950; von Holst and Mittelstaedt, 1950; Webb, 2004). Here,

we show how mice sample the environment while navigating a noisy odor gradient.

Navigating by chemical cues may be one of the most ancient problems motile organisms evolved

to solve, and it remains crucial in the lives of almost all modern species. Unicellular organisms and

some invertebrates navigate chemical gradients by chemotaxis (Bargmann, 2006; Berg, 2000;
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Lockery, 2011). In essence, their movement programs can be described as having two states: they

move straight when the concentration is increasing and reorient their movements when the concen-

tration is decreasing. Whereas chemical gradients are stable and informative at the spatial scale of

these organisms, for many larger or flying organisms, odor gradient cues do not provide useful posi-

tional information (Crimaldi et al., 2002; Murlis et al., 1992; Baker et al., 2018). At this larger spa-

tial scale, turbulent airflow moves odor molecules in dynamic spatiotemporal patterns, disrupting

concentration gradients and nullifying classical chemotaxis strategies. Instead, olfactory cues often

gate movements that depend on other sensory modalities. Here too, these organisms’ behavioral

structure can be described as transitions between two states: detection of odor promotes upwind

movement while the absence of odor promotes crosswind casting movement (Kennedy and Marsh,

1974; van Breugel and Dickinson, 2014; Vickers and Baker, 1994). In this behavioral program,

known as odor-gated anemotaxis, odor cues gate behavioral responses to positional information

provided by another modality. In both chemotaxis and odor-gated anemotaxis, search tasks can be

described with a two-state search model.

In comparison to invertebrates, our understanding of olfactory search behavior in vertebrates is

more rudimentary, even in commonly studied rodent models. In these animals, access to the olfac-

tory environment is gated by respiration, which is in turn responsive to incoming olfactory stimula-

tion (Kepecs et al., 2006; Wachowiak, 2011). Novel odors evoke rapid sniffing, during which

respiration synchronizes with whisker, nose, and head movements on a cycle-by-cycle basis

(Kurnikova et al., 2017; Moore et al., 2013; Ranade et al., 2013). Thus, during active mammalian

olfaction, sensory and motor systems interact in a closed loop via the environment, as is true for

other sensory modalities such as vision or somatosensation (Ahissar and Assa, 2016; Gibson, 1966).

The cyclical sampling movements coordinated by respiration further synchronize with activity in

widespread brain regions (Karalis and Sirota, 2018; Kay, 2005; Macrides et al., 1982; Vander-

wolf, 1992; Yanovsky et al., 2014; Zelano et al., 2016) similarly to correlates of locomotor, pupil-

lary, and facial movements observed throughout the brain (McGinley et al., 2015; Musall et al.,

2019; Niell and Stryker, 2010; Stringer et al., 2019). Respiratory central pattern generators may

coordinate sampling movements to synchronize sensory dynamics across modalities with internal

brain rhythms (Kleinfeld et al., 2014).

Previous work has shown that rodents follow odor trails, where the concentration gradient is

steep and stable, with rapid sniffing accompanied by side-to-side head movements (Jones and

Urban, 2018; Khan et al., 2012). In these conditions, serial sniffing and stereo olfactory cues guide

movements of the nose. Likewise, moles used concentration comparisons across space and time to

locate a food source in a sealed experimental chamber in which a lack of airflow allowed for even dif-

fusion of a chemical gradient (Catania, 2013). In this study, when input to the nares was reversed,

moles navigated towards odor sources at a distance, but demonstrated significant deficits at identi-

fying odor location when near the source. Behavioral modeling in mice further supports that inter-

naris concentration comparison plays a more important role in search near the source (Liu et al.,

2020). Thus, both serial sniffing and stereo cues can guide olfactory search behavior. The sensory

computations and movement strategies employed during navigation of an airborne odor plume are

less clear. In previous experiments where rodents searched in airborne odor plumes, mice developed

a memory-based strategy of serially sampling each possible reward location for the presence of

odor, turning search tasks into detection tasks (Bhattacharyya and Bhalla, 2015; Gire et al., 2016).

Thus, it remains unclear whether mammals can follow noisy concentration gradients under turbulent

conditions.

To better understand the sensory computations and sampling strategies for olfactory search, we

designed a two-choice behavioral assay where mice use olfactory cues to locate an odor source

while we monitor sniffing and movements of the head, nose, and body. We found that mice use a

concentration gradient-guided search strategy to navigate olfactory environments that contain tur-

bulent flow. We found that these navigational behaviors are robust to perturbations including intro-

duction of a novel odorant, varying the concentration gradient, and naris occlusion. Given the

fundamental importance of sniffing to olfactory function, we hypothesized that mice would selec-

tively sample the environment such that nose movement would be tightly coupled to respiration.

Consistent with this hypothesis, we found that mice synchronize rhythmic three-dimensional head

movements with the sniff cycle during search. These sniff-synchronized movement rhythms are prom-

inent during trials, and largely absent during the inter-trial interval (ITI), suggesting that sniff
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synchronous movement is a proactive strategy rather than a reactive reflex. To find structure in this

search strategy, we used unsupervised computational methods to parse movement trajectories into

discrete motifs. These movement motifs are organized into two distinguishable behavioral states

corresponding to investigation and approach, reminiscent of the two-state olfactory search pro-

grams described in smaller organisms. Temporally, investigation motifs lock to the sniff cycle with

precision at a tens of milliseconds scale. Spatially, patterns of investigation and approach usage indi-

cate a strategic advantage for investigating across the steepest part of the odor gradient. Our find-

ings reveal the microstructure of olfactory search behavior in mice, identifying sensory computations

and movement strategies that are shared across a broad range of species.

Results

Olfactory search in noisy gradients of airborne odor
We developed a two-alternative choice task in which freely moving mice report odor source location

for water rewards (Materials and methods and Figure 1A). To capture the search behavior, we mea-

sured respiration using nasal thermistors (McAfee et al., 2016) and video-tracked the animal’s body,

head, and nose position in real time at 80 frames/s (Figure 1B, E and Figure 1—figure supplement

1). The mouse initiates a trial by inserting its nose in a port (Figure 1C, ‘initiation’), which activates

odor release from two ports at the opposite end of the arena. The mouse reports the location of

higher odor concentration by walking toward it (Figure 1C, ‘search’). In previous studies, rodents

performing olfactory search tasks developed memory-guided foraging strategies. In essence, ani-

mals run directly to potential odor sources and sample each in turn, thus converting the search tasks

to detection tasks (Bhattacharyya and Bhalla, 2015; Gire et al., 2016). To prevent mice from

adopting sample-and-detect strategies, our task forces mice to commit to a decision at a distance

from the actual source. Using real-time video-tracking (Lopes et al., 2015), we enforced a virtual

‘decision line’, such that the trial outcome is determined by the mouse’s location when it crosses this

decision line (Figure 1C, ‘outcome’). For stimuli, we deliver odor from two separate flow-dilution

olfactometers, giving independent control over odor concentration on the two sides. To test olfac-

tory search over a range of difficulties, we presented four odor patterns, defined by the ratio of

odor concentration released from the two sides (Video 1, 100:0,80:20, 60:40, 0:0).

We measured the spatiotemporal distribution of odor using a photoionization detector (PID) in a

5 � 7 grid of sampling locations (Figure 1D and Figure 1—figure supplement 2). Pinene was used

for the majority of experiments because it is a neutral-valence odorant that is sensitively detected by

the PID. As designed, varying the concentration ratios produced across-trial-averaged gradients of

different magnitudes. Airflow in the arena is turbulent, imposing temporal fluctuations on the odor

gradient (Video 2). Thus, our assay tests an animal’s ability to navigate noisy odor gradients.

Mice learn the olfactory search task rapidly and robustly. We trained mice in the following

sequence (Figure 2A): first, naı̈ve, water-restricted mice obtained water rewards from all ports in an

alternating sequence (Figure 2—figure supplement 1A; ’Water sampling’). In the next phase of

training, we added odor stimulation such that odor delivery alternated in the same sequence as

reward, so that the mice would learn to associate odor with reward ports (Figure 2—figure supple-

ment 1B; ’Odor association’). Following these initial training steps, mice were introduced to the

olfactory search paradigm. Odor was pseudo-randomly released from either the left or right odor

source (’100:0’), signaling water availability at the corresponding reward port. Almost all mice per-

formed above chance in the first session (Figure 2B; binomial test, p<0.05 for 24 out of 25 mice, 75

± 9.2% correct, mean ± sd). Within four sessions, most animals exceeded 80% performance (19 out

of 26). Following 100:0, mice were introduced to the 80:20 condition with mean performance across

mice in the first session reaching ~60% (Figure 2—figure supplement 1). Most subjects improved to

exceed 70% performance over the next seven sessions (17 out of 24). The mice that did not were

excluded from subsequent experiments.

Next, we tested whether mice trained to search pinene plumes would generalize their search

behavior to a novel odorant. We chose vanillin as the novel odorant because, unlike pinene, vanillin

does not activate the trigeminal fibers of the nose (Cometto-Muñiz and Abraham, 2010;

Doty et al., 1978; Hummel et al., 2009). Thus, we could test whether trigeminal chemosensation is

necessary for performance in our task. We found no differences in performance between vanillin and
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Figure 1. Behavioral assay for freely moving olfactory search. (A) Diagram of experimental chamber where mice are tracked by an overhead camera

while performing olfactory search. (B) Top: nose and head positions are tracked using red paint at the top of the head. Sniffing is monitored via an

intranasally implanted thermistor. Bottom: example of sniffing overlaid on a trace of nose position across a single trial. (C) Diagram of trial structure.

Initiation. Mice initiate a trial via an initiation poke (gray oval). Search. Odor is then released from both odor ports (gray rectangles) at different

Figure 1 continued on next page

Findley, Wyrick, et al. eLife 2021;10:e58523. DOI: https://doi.org/10.7554/eLife.58523 4 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.58523


pinene sessions for these mice (Figure 2—figure supplement 2A; Wilcoxon rank-sum test, p=0.827,

n = 3). These data suggest that this search behavior generalizes across odors and does not rely on

the trigeminal system.

Mice can use gradient cues in turbulent flow
We reasoned that mice would solve this task using odor gradient cues. To vary odor gradients

between trials, we trained mice in sessions with interleaved concentration ratios (100:0, 80:20, 60:40)

across the trials of a session. In addition to these concentration ratios, odor omission probe trials

(0:0) were randomly interleaved into all experimental sessions. During these trials, airflow was identi-

cal to 80:20 trials, but air was directed through an empty vial rather than a vial containing odorant

solution. These odor omission trials served a twofold purpose: they acted as controls to ensure

behavior was indeed odor-guided, and they allowed us to observe how absence of odor impacts

search behavior. On these probe trials, mice performed at chance (binomial test, p=0.9989), with

longer trial durations (Wilcoxon rank-sum test, p<0.05) and more tortuous trajectories (Wilcoxon

rank-sum test, p<0.05) than on non-probe trials (Figure 2C; n = 19, all data from 80:20 condition

with probe trials). Performance drops with the concentration ratio (DC), consistent with our reason-

ing that mice would use odor gradient cues in this task (Figure 2D; pairwise Wilcoxon rank-sum

tests, p<0.05, n = 15). Varying the concentration ratio from 80:20 to 60:40 did not affect trial dura-

tion or path tortuosity, defined as actual path length divided by direct path length (Figure 2D; pair-

wise Wilcoxon rank-sum tests, p>0.05). However, trial duration and path tortuosity were slightly, but

statistically significantly, longer in the 100:0 condition (pairwise Wilcoxon rank-sum tests, p<0.05).

Given that these results were obtained using a single absolute concentration (|C|) across ratios,

mice could be solving our task with two distinct categories of sensory computation. One possibility

is that information about source location is

extracted from the odor gradient. An alternative

strategy would be to make an odor intensity

judgment that gates a response to positional

information from non-olfactory cues, such as wind

direction, visual landmarks, or self-motion. This

computation would be reminiscent of the odor-

gated visual and mechanosensory behaviors

observed in insects (Álvarez-Salvado et al.,

2018; Kennedy and Marsh, 1974; van Breugel

and Dickinson, 2014). To distinguish between

these possible strategies, we tested mice in ses-

sions interleaving the air dilution ratios 90:30 and

30:10. 30 is the correct answer in one condition

and incorrect in the other, so that mice cannot

use an intensity judgment strategy to perform

well in both ratio conditions. In both conditions,

Figure 1 continued

concentrations. Outcome. Mice that cross the decision line (red) on the side delivering the higher concentration as tracked by the overhead camera

receive a reward at the corresponding water port (blue ovals). (D) Colormaps of average odor concentration across ~15 two-second trials captured by a

7 � 5 grid of sequential photoionization detector recordings. Rows represent side of stimulus presentation (left or right). Odor concentrations beyond

the decision line were not measured. (E) Comparison of sniff recordings taken with an intranasally implanted thermistor and intranasally implanted

pressure cannula. These are implanted on the same mouse in different nostrils. Top: example trace of simultaneous pressure cannula (blue) and

thermistor (red) recordings with inhalation points (as detected in all future analyses) overlaid on the traces in their respective colors. Bottom left:

histogram of peak latencies (pressure inhalation onset – thermistor inhalation onset). 14/301 inhalations (4.7%) were excluded as incorrect sniff

detections. These were determined as incorrect because they fell more than 2 standard deviations outside the mean in peak latency (mean =

1.61585 ms, SD = ±14.93223 ms). Bottom right: peak latencies, defined as the difference between pressure inhalation onset and thermistor inhalation

onset, plotted against instantaneous sniff frequency.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Calibrating alignment of video frames with sniff signal.

Figure supplement 2. Characterizing the odor stimulus conditions.

Video 1. Odor gradients are temporally dynamic and

noisy. Colormaps represent the time course of odor

concentration for pseudo-trials assembled from

individual trials at each sampling location.

https://elifesciences.org/articles/58523#video1
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mice performed equally well in the first session of

training (Figure 2E; Wilcoxon rank-sum test,

p=0.465, n = 5). This equal performance is true

within the first 20 trials of the session (Figure 2—

figure supplement 2; Wilcoxon rank-sum test,

p=0.296). These results indicate that odor gra-

dients guide olfactory search under these

conditions.

We next asked how the mice are sensing the concentration gradient. Many mammals can use

stereo olfaction: comparing odor concentration samples between the nares (Catania, 2013;

Parthasarathy and Bhalla, 2013; Porter et al., 2007; Rabell et al., 2017; Rajan et al., 2006). To

test the role of stereo comparisons in our olfactory search task, we performed naris occlusion experi-

ments. Mice were tested in three conditions on alternating days: naris occlusion, sham occlusion,

and no procedure. We found that naris occlusion did not significantly impact performance or path

tortuosity (pairwise Wilcoxon rank-sum tests, p>0.05). When compared with the no-stitch condition,

the naris stitch condition resulted in a slight, but

statistically significant, increase in trial duration

(pairwise Wilcoxon rank-sum test, p<0.05).

This is not true when the stitch condition is

compared with the sham condition (pairwise Wil-

coxon rank-sum test, p>0.05), indicating this may

be a result of undergoing a surgical procedure.

These overall results indicate that stereo compari-

son is not necessary in this task (Figure 2F;

n = 13), and that temporal comparisons across

sniffs (Catania, 2013; Parabucki et al., 2019)

play a larger role under our task conditions.

Sniff rate and occupancy are
consistent across trials and
gradient conditions
To investigate active sampling over the time

course of trials, we tracked the animals’ sniffing,

position, and posture during behavioral sessions.

The overall sniff pattern was consistent across

Video 2. Example trials with sniffing. Three dots on the

mouse represent the coordinates of front of snout,

back of head, and center of mass extracted using

Deeplabcut. Sniffing is indicated by color

(blue = inhalation, pink = exhalation) and sound (higher

tone = inhalation, lower tone = exhalation). Video

frame rate is slowed by 4�.

https://elifesciences.org/articles/58523#video2 Video 3. Movement trajectories for individual sniffs.

Each video snippet corresponds to one sniff, where the

frames are translated so that the back of the head is

centered, and rotated so that the head angle is vertical,

in the first frame of each sniff. Blue = inhalation,

pink = exhalation. Video frame rate is slowed by 10�.

https://elifesciences.org/articles/58523#video3

Video 4. Example trials with motif sequences. Three

dots on the mouse represent the coordinates of front

of snout, back of head, and center of mass extracted

using Deeplabcut. Dots and lines are colored

according to the motif to which that frame was

assigned by the auto-regressive hidden Markov model.

Video frame rate is slowed by 8�.

https://elifesciences.org/articles/58523#video4
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Figure 2. Mice use concentration gradient cues in turbulent flow to perform search. (A) Initial training steps. Water sampling. In this task, mice alternate

in sequence between the initiation, left, and right nose pokes to receive water rewards. Odor association. Next, mice run the alternation sequence as

above without water rewards released from the initiation poke, making its only utility to initiate a trial. Further, odor is released on the same side of

water availability to create an association between odor and reward. Odor search. Here, mice initiate trials by poking the initiation poke. Odor is then

randomly released from the left or right odor port. Correct localization (see Figure 1C, decision line) results in a water reward and incorrect is deterred

Figure 2 continued on next page
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trials, with an inhalation just before trial initiation followed by a long exhalation or pause at the

beginning of the trial (Figure 3). Next, the mice performed a rapid burst of sniffs, then sniffed more

slowly as they approached the target (Figure 3A). In this active behavioral state, inhalation and sniff

durations were shorter during trials than during ITIs (p<<0.01 for all mice; Kolmogorov–Smirnov test;

Figure 3B, C), and strikingly shorter than those observed in head-fixed rodents (Bolding and

Franks, 2017; Shusterman et al., 2011; Wesson et al., 2009). After the decision, there is a second

rapid burst of sniffing followed by a long exhalation or pause during reward anticipation and

retrieval (Figure 3A). The overall sniff pattern was consistent across trials with an inhalation just

before trial initiation followed by a long exhalation or pause at the beginning of the trial

(Figure 3A). During this sniffing behavior, the mice moved their nose through tortuous trajectories

that were not stereotyped from trial to trial (Figure 3D, E; Video 1). Although individual mice

showed position biases (Figure 3—figure supplement 1), these biases were not systematic across

mice, so that the across-mouse mean occupancy distribution was evenly distributed across the two

sides of the arena (Figure 3F; n = 19). Consistent with this sniffing and movement pattern, the sniff

rate was highest near the initiation port and slower on the approach to target (Figure 3G). These

measures of active sampling were not statistically distinguishable across gradient or naris occlusion

conditions, but changed significantly on odor omission probe trials, with more fast sniffing and head

turns overall.

Mice synchronize three-dimensional kinematic rhythms with sniffing
during olfactory search
To test the hypothesis that nose movement locks to respiration during olfactory search, we aligned

movement dynamics with the sniff signal. Using Deeplabcut (Mathis et al., 2018; Mathis and

Mathis, 2020), we tracked the position of three points: tip of snout, back of head, and center of

mass (Figure 4A; Video 3). From the dynamics of these three points, we extracted the kinematic

parameters nose speed, head yaw velocity, and Z-velocity (Figure 4B–D). Synchrony between move-

ment oscillations and sniffing is apparent on a sniff-by-sniff basis (Figure 5), Video consistent across

mice, and selectively executed during olfactory search. On average, nose speed accelerates during

exhalation, peaks at inhalation onset, and decelerates during inhalation (Figure 5Ai).

Head yaw velocity, which we define as toward or away (Figure 4; centripetal or centrifugal) from

the body-head axis, reaches peak centrifugal velocity at inhalation, decelerates and moves centripe-

tally over the course of inhalation (Figure 5Aii). Although our videos are in two dimensions, we can

approximate movement in depth by analyzing the distance between the tip of the snout and the

back of the head (Figure 4B). This measure confounds pitch angular motion and vertical translational

motion, so we conservatively refer to this parameter as ‘Z-velocity’. Because mice point their head

downward during task performance, shortening of the distance between the tip of the snout and the

back of the head indicates downward movement, while increases in the distance correspond to

upward movements. The Z-velocity reaches peak upward velocity at inhalation onset, decelerates

and goes downward during inhalation, and rises again at exhalation (Figure 5Aiii). These modula-

tions were absent from trial-shuffled data (Figure 5—figure supplement 1; permutation test,

p<0.001). Cross-correlation and spectral coherence analysis further demonstrates the synchrony

Figure 2 continued

by an increased inter-trial interval (ITI). (B) Performance curve across sessions for the odor search (100:0) training step (n = 26). (C–F) Session statistics for

four different experiments. Each colored line is the average of an individual mouse across all sessions, black points are means across mice, and whiskers

are ±1 standard deviation across mice. Top: percent of correct trials. Middle: average trial duration. Bottom: average path tortuosity (total path length

of nose trajectory/shortest possible path length). (C) Odor omission. The 80:20 concentration ratio (Figure 1) and odor omission (0:0) conditions

randomly interleaved across a session. Data shown includes all sessions for each mouse (n = 19). (D) Variable DC, Constant |C|. Three concentration

ratio conditions (100:0, 80:20, 60:40) randomly interleaved across a session. Data shown includes all sessions for each mouse (n = 15). (E) Constant DC,

Variable |C|. Concentration ratio conditions 90:30 and 30:10 randomly interleaved across a session (n = 5). Data shown for first session only. (F) Naris

occlusion. 80:20 sessions for mice with no naris stitch, a sham stitch that did not occlude the nostril, and a naris stitch that occluded one nostril (n = 13).

Data shown includes all naris occlusion sessions even if the mouse did not perform under every experimental condition.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Session statistics across trainer sessions.

Figure supplement 2. Mice generalize search task to novel odorants and variable |C| session.
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Figure 3. Distributions of sniffs and nose positions during search task. (A) Above: sniff raster plot for three sessions. Each black point is an inhalation,

each row is a trial aligned to trial initiation (dashed line). Rows are sorted by trial length. Blue region represents trial initiation to trial end. Below: mean

instantaneous sniff rate across all trials for all mice aligned to time from trial initiation. Thin lines are individual mice, the thick line is the mean across

mice, and shaded region is ±1 standard deviation. (B) Histogram of inhalation duration time across all mice (n = 11). Thick lines and shaded regions are

Figure 3 continued on next page
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between nose movement and sniffing (Figure 5B, C). These results demonstrate that kinematic

rhythms lock to sniffing with tens of milliseconds precision, consistent with a previous report demon-

strating that rats make similar movements during novel odor-evoked investigative behavior

(Kurnikova et al., 2017). Our findings show that precise cycle-by-cycle synchronization can also be a

feature of goal-directed odor-guided behavior. Mice selectively deploy this pattern of sniff-synchro-

nized three-dimensional nose movement. For nose speed, yaw velocity, and Z-velocity, sniff syn-

chrony is significantly reduced during the ITI when the mouse is returning from the reward port to

initiate the next trial, even when the mouse is sniffing rapidly. Modulations in nose speed were

slightly different than trial-shuffled data, showing that sniff-synchronized movement is not totally

absent during the ITI, whereas modulations in yaw velocity and Z-velocity were indistinguishable

from trial-shuffled data (Figure 5—figure supplement 1). This difference between within-trial and

between-trial sniff synchrony was not contingent on the mouse’s slower nose speed during the ITI

(Figure 5A). Kinematic synchrony was the same when only periods of high-speed nose movement in

the ITI are included in the analysis (Figure 5—figure supplement 2). This reduction of kinematic syn-

chrony when the mouse is not performing the task suggests that sniff-synchronized movement is not

an inevitable biomechanical accompaniment to fast sniffing, but rather reflects a strategic behavioral

state. Further support for this idea comes from analyzing time intervals when the mouse attempts to

initiate a trial before the end of the ITI.

After such premature attempts at trial initiation, the mice execute sniff-synchronized movement,

despite the absence of the experimenter-applied odor stimulus (Figure 5—figure supplement 2).

Lastly, sniff synchrony changes dramatically in the time interval between crossing the virtual decision

line and entering the reward port, when odor is still present yet the animal has committed to a deci-

sion (Figure 5—figure supplement 2). Taken together, our observations indicate that sniff synchro-

nous movement is a proactive, odor-seeking strategy rather than a reactive, odor-gated reflex.

State space modeling finds recurring motifs that are sequenced
diversely across mice
In our olfactory search paradigm, the overall rhythm of nose movement synchronizes with sniffing

(Figures 4 and 5), and yet the mice move through a different trajectory on every trial (Figure 3D).

Given this heterogeneity, it was not obvious to us how to best quantify common features of move-

ment trajectories across trials and subjects. Rather than guess at suitable features, we used an unsu-

pervised machine learning tool, modeling the movement data with an auto-regressive hidden

Markov model (AR-HMM) (Murphy, 2012; Poritz, 1982). This model parses continuous sequential

data into a discrete set of simpler movement motif sequences, similarly to ‘Motion Sequencing’

(MoSeq) (Wiltschko et al., 2015). We fit AR-HMMs to the allocentric three-point coordinate data

(front of snout, back of head, and center of mass Video 4) pooled across a subset of mice and trial

conditions (see Materials and methods and Figure 2; e.g., 80:20, 90:30, nostril stitch). Models were

then tested for their ability to explain a separate set of held-out trials (see Materials and methods).

These models defined discrete movement patterns, or ‘motifs’, that recur throughout our dataset (e.

g., Figure 6A). We fit different AR-HMMs each constrained to find a particular number of motifs

(between 6 and 100) and found that the cross-validated log-likelihood of these fits continued to rise

up to 100 motifs (Figure 6—figure supplement 1). For visualization, we will focus on a model with

16 states, which we narrow to 11, by excluding rare motifs that take up <5% of the assigned video

frames (Figure 6B and Figure 6—figure supplement 1C, D). Models with more or fewer states

gave equivalent results (Figure 6—figure supplements 2–4).

Figure 3 continued

mean and ±1 standard deviation, thin lines are individual mice. Green: within-trial sniffs; pink: inter-trial interval sniffs. (C) Histogram of sniff duration

time across all mice (n = 11). (D) The nose traces of each trial across a single session, colored by chosen side. (E) Location of all inhalations across a

single session, colored by chosen side. (F) Two-dimensional histogram of occupancy (fraction of frames spent in each 0.5 cm2 bin). Colormap represents

grand mean across mice (n = 19). (G) Grand mean sniff rate colormap across mice (n = 11).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Idiosyncratic occupancy distributions across individual mice.
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Figure 4. Quantifying kinematic parameters during olfactory search. (A) Schematic of kinematic parameters. Left: two example frames from one mouse,

with the three tracked points marked: tip of snout, back of head, and center of mass. (B) Quantified kinematic parameters: ‘nose speed’: displacement

of the tip of the snout per frame (12.5 ms inter-frame interval). ‘Yaw velocity’: change in angle between the line segment connecting snout and head

and the line segment connecting head and center of mass. Centrifugal movement is positive, centripetal movement is negative. ‘Z-velocity’: change in

distance between tip of snout and back of head. Note that this measure confounds pitch angle and Z-axis translational movements. (C) Segments of

example trajectories. Left: the trajectory of the nose during 1 s of trial time. Green: path during inhalations. Black: path during the rest of the sniff.

Figure 4 continued on next page
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The motifs extracted by this model have interpretable spatiotemporal trajectories on average

(Figure 6B, Video 5), although averaging masks considerable across-instance variability (Video 6).

Across trials for a given mouse, motifs occurred in consistent but non-stereotyped sequences

(Figure 6C, Video 5). Across mice, the model identified consistent behavioral features as motifs

(Figure 6—figure supplement 5), but most mice were uniquely identifiable from how they

sequenced motifs across trials. A classifier trained to decode mouse identity from the motif sequen-

ces on a trial-by-trial basis was able to perform above chance for eight out of nine mice (Figure 6D;

p<0.01). Across the different concentration ratios (Figure 2D), movement sequences were not statis-

tically distinguishable (Figure 6E). The only condition that gave distinguishable motif patterns were

the odor omission trials (0:0), in which the mice made longer, more tortuous trajectories (Figure 2C).

Thus, although this model is sensitive enough to decode mouse identity (Figure 6D), it does not

detect stimulus-dependent modifications of sampling behavior, suggesting that the mice do not

modify their sampling behavior in a gradient-dependent manner, at least in the movement parame-

ters we measured. This lack of modification ran counter to our expectations because we reasoned

that making the task harder would make the mice adjust their strategy to maintain high perfor-

mance. We speculate that this absence of an adaptive strategy is due to impulsivity (Miyazaki et al.,

2012; Fonseca et al., 2015).

Movement motifs reveal two-state organization of olfactory search
Many behaviors have hierarchical structure that is organized at multiple temporal scales. Brief move-

ments are grouped into progressively longer modules and are ultimately assembled into purposive

behavioral programs (Berman et al., 2016; Gallistel, 1982; Tolman, 1932; Weiss, 1968).

Olfactory search programs in smaller organisms are often organized into two overarching states:

move straight when concentration is increasing and reorient when concentration is decreasing (Barg-

mann, 2006; Berg, 2000; Gomez-Marin et al., 2011; Kennedy and Marsh, 1974; Lockery, 2011;

van Breugel and Dickinson, 2014; Vickers and Baker, 1994). We hypothesized that olfactory

search motifs in mice are organized similarly. To reveal higher-order structure in the temporal orga-

nization of these motifs, we applied a clustering algorithm that minimizes the Euclidean distance

between rows of the Markov transition matrix (i.e., purely based on the conditional probabilities of

motifs following them). This clustering separated motifs into two groups (Figure 7A), with several

distinct properties. These properties were present in models with more or fewer states (Figure 6—

figure supplements 2–4). Based on these differences (see below), we label these groups as putative

‘investigation’ and ‘approach’ states. First, investigation and approach motifs cluster their onset

times in the trial, with investigation motifs tending to occur early in the trial, while approach motifs

tend to begin later (Figure 7B). Grouping motifs into these higher-order states shows a consistent

trial sequence, with trials beginning with investigation and ending with approach (Figure 7C, D).

Importantly, entering the approach state is not a final, ballistic commitment to a given water port –

switches from approach back to investigation were common (Figure 7C, D, Video 7). This pattern

suggests that the mice are continuously integrating evidence about the odor gradient throughout

their trajectory to the target. Second, these states correlated with distinct sniff rates and movement

speeds. During investigation motifs, the mice moved more slowly and sniffed more rapidly, whereas

the approach states were associated with faster movement and slower sniffing (Figure 7E) (Video 8).

Third, the sniff-synchronized kinematic rhythms (Figures 4 and 5) were distinct in the two states

(Figure 7F; Kolmogorov–Smirnov test, p<0.01). Specifically, nose speed and yaw velocity are more

synchronized with sniffing during the investigation state (Figure 7F). Given the consistent sequence

from investigation to approach and given that mice sniff faster during the early part of trial, these

differences in kinematic parameters could reflect across-trial tendencies instead of within-trial syn-

chrony. To test this possibility, we calculated the Kolmogorov–Smirnov statistic, which quantifies the

difference between two cumulative distributions, for real and trial-shuffled data (Figure 8—figure

supplement 1). This analysis showed that nose speed and yaw velocity modulation exceeded what

Figure 4 continued

Right: same for an inter-trial interval trajectory. (D) Traces of sniff and kinematic parameters during the time windows shown in (C). Color scheme as in

(C).
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Figure 5. Kinematic rhythms synchronize with the sniff cycle selectively during olfactory search. (i–iii) Nose speed, yaw velocity, and Z-velocity,

respectively (see Figure 4 for definitions). (A) Top: color plot showing movement parameter aligned to inhalation onset for within-trial sniffs taken

before crossing the decision line. Taken from one mouse, one behavioral session. Dotted line at time 0 shows inhalation onset, the second line

demarcates the end of the sniff cycle, sorted by duration. Data are taken from one behavioral session. Middle: color plot showing each movement

Figure 5 continued on next page
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would be expected from across-trial tendencies (1000 shuffles, p<0.001), while the Z-velocity modu-

lation did not (p=0.31). Switches between the investigation and approach state mark behavioral

inflection points that can be identified from trial to trial. We reason that these behavioral inflection

points are a signature of key moments in the mouse’s evolving decision process. Thus, our analysis

can provide a framework for temporal alignment of diverse movement trajectories with simulta-

neously recorded physiological data (Markowitz et al., 2018).

Investigation motif onsets are precisely locked to sniffing
If motif transitions correspond to relevant behavioral events, their temporal structure should corre-

late with the temporal structure of neural activity (Markowitz et al., 2018). During fast sniffing, res-

piration matches with the rhythms of head movement (Figures 4 and 5), whisking, and nose twitches

(Kurnikova et al., 2017; Moore et al., 2013; Ranade et al., 2013). These motor rhythms correlate

with activity in numerous brain regions, including brainstem, olfactory structures, hippocampus,

amygdala, and numerous neocortical regions (Karalis and Sirota, 2018; Kay, 2005; Macrides et al.,

1982; Vanderwolf, 1992; Yanovsky et al., 2014; Zelano et al., 2016). We hypothesized that move-

ment motifs would lock with these behavioral and neural rhythms, so we aligned sniff signals with

motif onset times. Importantly, the breath signal was not input to the model.

This alignment revealed a striking organization of motif sequences relative to the sniff rhythm.

For example, the onset times of motif 6 (dark blue) occurred in a precise timing relationship with

sniffing (Figure 8A). To visualize the timing relationship between onsets of all motifs and sniffing, we

calculated the equivalent of a peristimulus time histogram for inhalation times relative to the onset

time of each motif and took the grand mean across all mice (Figure 8B; n = 4). Further, to determine

how motif onset times are organized relative to the sniff cycle, for each motif we calculated a histo-

gram of motif onset in sniff phase coordinates (Figure 8C; relative position in the sniff cycle). Sharp

peaks are apparent in both histograms for investigation motifs, and less so for approach motifs

(quantified below; Figure 8B, C). Importantly, these timing relationships are consistent across mice,

with some motifs tending to occur early in the sniff cycle during inhalation and others occurring later

in the sniff cycle (Figure 8D). Thus, parsing diverse movement trajectories into sequences of recur-

ring movement motifs reveals additional sniff-synchronized kinematic structure in a consistent man-

ner across mice.

Are motif onsets timed with respect to inhalation times, or do they coordinate with the entire sniff

cycle? In other words, is motif onset probability more modulated in time or phase? To quantify the

sniff synchronization of motif onset times, we calculated a modulation index

MI ¼ max� minð Þ= maxþ minð Þð Þ for each motif’s across-mouse mean histogram (n = 4). To test

whether these trial-by-trial modulation indices exceeded what would be expected from across-trial

tendencies, we compared real and trial-shuffled data (Figure 8—figure supplement 2). All investiga-

tion motifs were significantly modulated for both time and phase coordinates (Figure 8E; filled sym-

bols, permutation test, p<0.001), with some having higher MI in time, and others in phase. One

approach motif was significantly modulated in time coordinates (Figure 8E; right-half filled symbol,

p=0.003), while two approach motifs were significantly modulated in phase coordinates (Figure 8E;

left-half filled symbols, p=0.015 and p<0.001). Comparing the modulation indices between time and

phase coordinates does not reveal a consistent pattern of modulation in time vs. phase – some

motifs had higher MI in phase, others in time. Thus, our data are inconclusive as to how motif onsets

organize relative to the sniff cycle. Nevertheless, these analyses demonstrate that kinematic inflec-

tion points synchronize with breathing during olfactory search. Given that breathing synchronizes to

Figure 5 continued

parameter aligned to inhalation onset for inter-trial interval sniffs taken before the first attempt at premature trial initiation. Bottom: sniff-aligned

average of each movement parameter. Thin lines represent individual mice (n = 11), bolded lines and shaded regions represent the grand mean ±

standard deviation. Green: within-trial sniffs; pink: inter-trial interval sniffs. (B) Normalized cross-correlation between movement parameter and sniff

signal for the same sniffs as above. (C) Spectral coherence of movement parameter and sniff signal for the same sniffs as above.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Sniff synchronization shuffle test.

Figure supplement 2. Kinematic rhythms for premature initiations during the inter-trial interval and between decision line and reward port during trials.
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Figure 6. Recurring movement motifs are sequenced diversely across mice and consistently across stimuli. (A) Eight example frames from one instance

of a behavioral motif with tracking overlaid. (B) Average motif shapes. Dots and lines show the average time course of posture for eight frames of each

of the 11 motifs (n = 9 mice). All instances of each motif are translated and rotated so that the head is centered and the head-body axis is oriented

upward in the first frame. Subsequent frames of each instance are translated and rotated the same as the first frame. Time is indicated by color (dark to

Figure 6 continued on next page
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other motor and brain rhythms, these motifs likewise correlate to the structure of activity of many

neurons. Thus, our analysis will be a useful tool to pinpoint behaviorally relevant activity in wide-

spread brain regions.

Investigation and approach occupancy maps suggest a serial-sniff
comparison strategy
We propose that motif transition times indicate ‘decision points’ at which the animal chooses its

next move (Markowitz et al., 2018). The transitions between investigation and approach motifs are

particularly relevant since investigation motifs

may correspond to an evidence-gathering state,

while approach motifs may correspond to a

reward-gathering state. What kind of sensory evi-

dence guides transitions between investigation

and approach? Although we cannot determine

the precise odor inputs the mice acquire on a

sniff-by-sniff basis, we reasoned that we could

elucidate the search strategy by examining

aggregate across-trial patterns in allocentric

maps of investigation and approach occupancy.

As expected from the temporal structure of

investigation and approach (Figure 7C, D), the

mice primarily investigate near the initiation port

(Figure 9A; n = 9 mice) and primarily approach

close to the decision line (Figure 9A, orange).

Along the longitudinal axis of the arena, the two

occupancy maps overlap in a region between ini-

tiation port and decision line (Figure 9A, black)

where overall occupancy also peaks (Figure 3F).

Along the lateral axis of the arena, on average

the overlap region is roughly centered on the lat-

eral midline between left and right sides

(Figure 9A). However, this centered position is

not representative of the individual mice, which

have their overlap region in different positions

relative to the lateral midline, with some on the

left, and others on the right (Figure 9—figure

Figure 6 continued

light). Background color in each panel shows the color assigned to each motif. (C) Across-trial motif sequences for two behavioral sessions for one

mouse. Trials are separated into trials where the mouse chose left and those in which the mouse chose right. Trials are sorted by duration. Both correct

and incorrect trials are included. Color scheme as in (B). (D) Linear classifier analysis shows that mice can be identified from motif sequences on a trial-

by-trial basis. Grayscale represents the fraction of trials from a given mouse (rows) that are decoded as belonging the data of a given mouse (columns).

The diagonal cells represent the accuracy with which the decoded label matched the true label, while off-diagonal cells represent trials that were

mislabeled by the classifier. Probabilities along rows sum to 1. Cells marked with asterisks indicate above chance performance (label permutation test,

p<0.01). (E) Linear classifier analysis identifies odor omission trials above chance, but does not discriminate across odor concentration ratios (n = 9

mice). (F) Cross-validated log-likelihood (evaluated on trials not used for model fitting) for fit auto-regressive hidden Markov model (AR-HMM) models

with different numbers of motifs, S, shows that model log-likelihood does not peak or plateau up to S = 100.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Motif statistics and examples and linear decoder results for 80:20 experiments.

Figure supplement 2. Motif shapes, sequences, transition matrices, and sniff synchronization for an auto-regressive hidden Markov model capped at a
maximum of six states.

Figure supplement 3. Motif shapes, sequences, transition matrices, and sniff synchronization for an auto-regressive hidden Markov model capped at a
maximum of 10 states.

Figure supplement 4. Motif shapes, sequences, transition matrices, and sniff synchronization for an auto-regressive hidden Markov model capped at a
maximum of 20 states.

Figure supplement 5. Motif shapes across individuals.

Video 5. Moving occupancy histograms for motifs

show their average movement dynamics. We aligned

every instance of a given motif such that that instance’s

frames were translated to position the center of mass

in frame 1 at consistent location in the image and

rotated so that the body axis points upward in frame 1.

Colormap represents regions of high occupancy with

brighter, warmer colors, and lower occupancies with

darker, colder colors. Video frame rate is slowed by 8�.

https://elifesciences.org/articles/58523#video5
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supplement 1A). However, if trials are oriented

such that the chosen side is always up in the

occupancy maps, the overlap region is displaced

toward the chosen side of the arena in all individ-

ual mice (Figure 9—figure supplement 1B).

Thus, the mice primarily switched states while

located on the side they would ultimately choose.

To quantify the overlap between states, we calcu-

lated a relative occupancy index, defined as the

difference in investigation and approach occu-

pancy divided by their sum (Figure 9C, I.A.I.). For

this index, a bin where the mice primarily investi-

gated has a positive value, while a bin primarily

occupied during the approach state has a nega-

tive value. Along the longitudinal axis, most of

the change in this index occurred between inflec-

tion points at 5 and 10 cm, which we define as a

‘transition zone’ for the analyses below

(Figure 9D).

Along the lateral axis of the arena, I.A.I. was

quite variably distributed across mice, both for

the entire occupancy map and within the transi-

tion zone (Figure 9E), consistent with the individ-

ual mouse occupancy maps (Figure 9—figure

supplement 1A). Orienting trials with respect to

the chosen side demonstrates a clearer pattern,

with primarily investigation on the unchosen side and primarily approach on the chosen side

(Figure 9F and Figure 9—figure supplement 1B).

Occupancy maps allowed us to further evaluate hypotheses about the search strategy mice use in

these conditions. One hypothetical strategy is that the mice memorize absolute concentrations

across trials and compare each individual sniff to an internal threshold learned over previous trials

(single-sniff hypothesis). Another possible strategy would be serial-sniff comparison, where the

mouse senses changes between sequential samples within individual trials (serial-sniff hypothesis).

These hypotheses make distinct predictions

about where the mouse should sample. For the

single-sniff hypothesis, the most informative loca-

tion to sample is directly downwind of the odor

ports, where concentration differences between

left and right trials are maximal (Figure 1—figure

supplement 2). For gradient sensing, the optimal

location is instead across the lateral midline,

where the gradients are sharpest (Figure 1—fig-

ure supplement 2; Yovel et al., 2010). We

tested these predictions by comparing occupancy

maps between correct and incorrect trials. For

the single-sniff strategy, the mouse should get it

correct more often when it investigates down-

wind of the odor ports, while a serial sniff hypoth-

esis predicts that correct trials should show

increased investigation at the midline.

Correct and incorrect trials yielded qualita-

tively similar occupancy maps (Figure 10A). To

quantify their differences, we first compared their

occupancy indices along the longitudinal axis of

the arena (Figure 10B, C). Correct trials featured

significantly higher I.A.I. (greater investigation) in

Video 6. Moving wireframes for motifs show the

variability of movement dynamics for a given motif.

Wireframes consist of two lines connecting coordinates

of front of snout, back of head, and center of mass

extracted using Deeplabcut. Each wireframe represents

a single instance of every motif. We aligned frames as

in Video 5. Lines are colored arbitrarily to facilitate

visualization of individual wireframes. Video frame rate

is slowed by 8�.

https://elifesciences.org/articles/58523#video6

Video 7. Example trials with investigation/approach

overlaid. Three dots on the mouse represent the

coordinates of front of snout, back of head, and center

of mass extracted using Deeplabcut. Dots and lines are

colored according to whether that frame was assigned

by the auto-regressive hidden Markov model to an

investigation motif or an approach motif. Sniffing is

indicated by sound (higher tone = inhalation, lower

tone = exhalation). Video frame rate is slowed by 8�.

https://elifesciences.org/articles/58523#video7
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Figure 7. Behavioral motifs can be categorized into two distinct groups, which we putatively label as investigation (blue) and approach motifs (orange).

Colors in panel A & B refer to motifs specified in Figure 6. (A) Transition probability matrix. Grayscale represents the log probability with which a given

motif (rows) will be followed by another (columns). Clustering by minimizing Euclidean distance between rows reveals two distinct blocks of motifs. We

label the top-left block as ’investigation’ and the bottom-right block as ’approach’. (B) Distribution of onset times for each motif, normalized by trial

Figure 7 continued on next page
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the latter part of the transition zone, while past the decision zone the I.A.I. was higher for incorrect

trials (Figure 10C; permutation test, p<0.001, n = 9 mice). Thus, increased investigation in the transi-

tion zone was associated with correct trials, while increased investigation near the decision line was

associated with incorrect trials. This pattern suggests that investigation is not inherently advanta-

geous to olfactory search irrespective of location. Instead, it matters where the mouse investigates,

and some locations are less advantageous. Notably, absolute concentrations are most discriminable

near the decision line (Figure 1—figure supplement 2C), suggesting that mice may not be able to

capitalize on this cue under these conditions.

We next quantified state occupancies along the lateral axis within the transition zone

(Figure 10D–F). Correct trials featured significantly increased investigation at and on the unchosen

side of the midline relative to incorrect trials (Figure 10G; permutation test, p<0.001, n = 9 mice).

By definition, occupancy of the unchosen side precedes a crossing of the midline to get to the cho-

sen side. This suggests an advantage to sampling both sides of the midline, consistent with a serial-

sniff gradient sensing strategy. Further, investigation more laterally, downwind of the odor port, was

increased on incorrect trials, suggesting that sampling this location was not advantageous for task

performance, contrary to the single-sniff absolute concentration hypothesis. Approach occupancy

showed a different pattern, with significantly higher approach at and around the midline on incorrect

trials, and a significant increase in approach occupancy closer to the chosen water port (Figure 10H;

permutation test, p<0.001). Consistent with these observations, on correct trials I.A.I. showed signifi-

cant elevation at the midline and into the unchosen side of the arena, while increased I.A.I. of the

chosen side was associated with incorrect trials (Figure 10I; permutation test, p<0.001). Altogether,

these results suggest that it is advantageous to sample both sides of the midline in this task, consis-

tent with the serial-sniff hypothesis.

An important consideration in interpreting

these results pertains to the construction of our

task. Before choosing a side, the mice have to

turn out of the initiation port in one direction or

the other on every trial. On some trials they stay

and choose the side of the first turn, while on

other trials they switch and choose the other

side. A single-sniff hypothesis predicts that if the

mouse happens to turn first toward the correct

side, it will tend to encounter above threshold

concentrations during the turn and should there-

fore tend to transition to approach without cross-

ing the midline. However, if the mouse turns first

to the incorrect side, threshold crossings will

tend not to occur and the mouse can initiate

approach before crossing the midline.

Thus, this hypothesis predicts that correct vs.

incorrect occupancy differences should occur at

Figure 7 continued

duration. Investigation motifs tend to occur early in trials, while approach motifs tend to occur later (n = 9 mice). (C) Across-trial motif sequences for

two behavioral sessions for one mouse, with motifs classified into investigation and approach. Trials are separated into correct trials (above) and

incorrect trials (below). Motif sequences are sourced from the same data as Figure 6C. (D) Temporal details of investigation-approach transitions with

overlaid sniff signal. Data come from a subset of trials shown in (C). In the sniff signal, green represents inhalations, black represents the rest of the sniff.

(E) Investigation and approach motifs differ in nose speed and sniff rate. Individual markers represent one motif from one mouse. Marker shapes

correspond to the individual mice (n = 4). Sniff rate and nose speed are normalized within mice. (F) Investigation and approach motifs differ in the

kinematic rhythms (same parameters as in Figures 4 and 5). Thin lines represent individual mice (n = 4), thick lines and shaded regions represent the

grand mean ± standard deviation. Blue: within-trial sniffs; orange: inter-trial interval sniffs. Top: nose speed modulation, defined by a modulation index

maxspeed � minspeedð Þ= maxþ minð Þ calculated from the grand mean, is significantly greater for investigation motifs than approach motifs (Figure 8—

figure supplement 1; p<0.001, permutation test). Middle: yaw velocity modulation is significantly greater for investigation motifs than approach motifs

(Figure 8—figure supplement 1; p<0.001, permutation test). Bottom: Z-velocity modulation does not significantly differ between approach motifs and

investigation motifs (p=0.31, permutation test).

Video 8. Movement trajectories for individual sniffs

separated into investigation and approach. Each video

snippet corresponds to one sniff, where the frames are

translated so that the back of the head is centered and

rotated so that the head angle is vertical, in the first

frame of each sniff. Blue = inhalation,

pink = exhalation. Video frame rate is slowed by 10�.

https://elifesciences.org/articles/58523#video8
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different positions along the lateral axis for stay and switch trials. To test this prediction, we per-

formed the same analyses separately for stay and switch trials. Although not identical, both stay and

switch trials showed significantly increased investigation at and on the unchosen side of the midline

for correct trials (Figure 10—figure supplement 1). This analysis demonstrates that the apparent

advantage of sampling across the midline is not an artifact of the asymmetry between switch and

stay trials. Taken together, investigation and approach occupancy mapping provides further

Figure 8. Motif onsets synchronize to the sniff cycle. (A) Alignment of the sniff signal to an example motif. Top: color scheme shows sniff cycles aligned

to the onsets of motif 6 (blue). Motif instances are in chronological order. Green: inhalation; black: rest of sniff. Bottom: peristimulus time histogram of

inhalation times aligned to the onset of motif 6. (B) Alignment of sniff signal to onset times of all motifs across mice (n = 4). Motifs categorized into two

types we call investigation (light blue) and approach (orange). Colormap represents the grand means for peristimulus time histograms of inhalation

times aligned to the onset of motifs. (C) Alignment of motif onset times in sniff phase. Colormap represents peristimulus time histograms of motif

onsets (bin width = 12.5 ms) times aligned to inhalation onset, with all sniff durations normalized to 1. Dotted line shows the mean phase of the end of

inhalation. (D) Motif alignment to sniff phase is consistent across mice. Thin lines represent individual mice, black points are means, and whiskers are ±1

standard deviation (n = 4 mice). (E) Investigation motifs are more synchronized to the sniff cycle than approach motifs. Dots represent the modulation

index in time on the x-coordinates and in phase on the y-coordinates. Filled dots represent motifs that are significantly modulated in both time and

phase (p<0.01, permutation test). Half-filled dots represent motifs that are significantly modulated in time (left half filled) or phase (right half filled).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Shuffle test for the difference in sniff synchronization between investigation and approach motifs for movement parameters.

Figure supplement 2. Shuffle test for sniff synchronization of motif onset for investigation and approach motifs.
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Figure 9. The allocentric spatial distribution of investigation and approach occupancy. (A) Colormaps show two-dimensional histograms of the

occupancy density (1 cm2 bins, n = 9 mice) with investigation density in blue, approach density in orange, and overlap shown by darker coloring (key in

top-left corner). Histograms around the colormaps show the state occupancy projected onto the longitudinal (top) and lateral (left) axes of the arena.

(B) Occupancy distributions after the right-choice trials are flipped upward so that the chosen side is always facing up in the diagram. (C) Relative usage

is quantified with an investigation approach index (I.A.I.), defined as the difference between investigation and approach occupancy divided by their

sum. Blue and orange triangles are visual aids that represent the I.A.I. (D) Relative occupancy density of investigation and approach (I.A.I.), plotted

along the longitudinal axis of the arena from the initiation port to the decision line. We define the region between 5 cm and 10 cm as a ‘transition

zone’, in which most transitions between investigation and approach take place. Thin lines are individual mice (n = 9), thick line and shaded region are

mean ± s.e.m. (E) I.A.I. plotted along the lateral axis in real space (i.e., left-right orientation) for all occupancy throughout the arena (left) and for the

Figure 9 continued on next page
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evidence, suggesting that mice use a serial-sniff strategy to sense gradient cues in this task

(Catania, 2013).

Discussion
This study elucidates sensory computations and movement strategies for olfactory search by

freely moving mice. Mice learn our behavioral task in days, after which they perform approximately

150 trials daily, sometimes for months. Task performance worsens for shallower odor gradients at a

fixed absolute concentration, but is unaffected by varying absolute concentrations at a fixed concen-

tration gradient. Taken together, these results show that mice can navigate noisy gradients formed

by turbulent odor plumes. This gradient-guided search is robust to perturbations including novel

odorant introduction and naris occlusion. These results give insight into sensory computations for

olfactory search and constrain the possible underlying neural mechanisms.

Mice perform this task with a strategic behavioral program. During search, mice synchronize rapid

three-dimensional head movements with fast sniffing. This synchrony is not a default accompaniment

of fast sniffing – synchrony is absent when the mice are not searching. Movement trajectories are not

stereotyped, but vary considerably across trials. To manage this complexity, we took an unsuper-

vised computational approach to parse heterogeneous trajectories into a small number of move-

ment motifs that recur across trials and subjects. This analysis captures common movement features

across mice, but individual mice can be identified by how they sequence these motifs. Our model

was not constrained to find structure at a specific timescale, and consequently identified very brief,

simple motifs. To find higher-order temporal structure in the data, we clustered motifs by their tran-

sition probabilities, which revealed two clear categories, putatively corresponding to investigation

and approach. Investigation motifs tend to be executed early in the trial, and entail slower move-

ment, faster sniffing, and more sniff synchrony than approach motifs. Even so, approach motifs are

not ballistic commitments to an answer – switches from approach to investigation occurred on many

trials. Lastly, the onset times of motifs were precisely locked to sniffing, with investigation motifs

starting at characteristic phases of the sniff cycle.

The allocentric structure of investigation and approach suggests that the investigation state is not

inherently advantageous. Rather, where the mouse investigates matters for performance. This

dependence of performance on location indicates the spatial distribution of informative features in

this olfactory scene. Notably, incorrect trials feature more investigation directly downwind of the

odor source, along the axis of maximal odor concentration, which would be optimal if the mouse

were using a single-sniff, absolute concentration strategy (Figure 1—figure supplement 2C). Thus,

these analyses provide further evidence that the mice do not capitalize on absolute concentration

information to guide performance in this task. Instead, correct trials feature more investigation at

and across the axis of maximal odor gradient (Figure 1—figure supplement 2D), reminiscent of an

object localization strategy observed in Egyptian fruit bats. When approaching an object, these bats

do not center their sonar beams directly at the object, but rather point them off axis, so that the

maximum slope of the acoustic profile intersects the object (Yovel et al., 2010). Likewise, in this

task mice do not gain an advantage by centering their sniffing directly downwind of the odor sour-

ces, but rather perform best when they investigate the location of the steepest slope of the odor

gradient, consistent with a serial-sniff gradient sensing strategy. Thus, our unsupervised computa-

tional analysis of airborne odor tracking supports the idea that sampling off axis can be an optimal

strategy for localization across diverse sensory systems and species (Yovel et al., 2010).

Olfactory navigation can be either guided or gated by odor (Baker et al., 2018). Some organisms

operate in a regime where diffusion forms smooth chemical gradients, in which classical chemotaxis

strategies can be effective (Bargmann, 2006; Berg, 2000; Gomez-Marin and Louis, 2012;

Figure 9 continued

transition zone only (right). Thin lines are individual mice (n = 9), thick line and shaded region are mean ± s.e.m. (F) Same as (E), but after the lateral axis

has been reoriented so that the chosen side is always up.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. The allocentric spatial distribution of investigation and approach occupancy for individual mice.
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Figure 10. Occupancy maps indicate an advantage for investigation of both sides. (A) Colormaps show two-dimensional histograms of the occupancy

density (1 cm2 bins, n = 9 mice) with investigation density in blue, approach density in orange, and overlap shown by darker coloring (key in top-left

corner). Histograms around the colormaps show the state density projected onto the longitudinal (top) and lateral (left) axes of the arena. Left: correct

trials. Right: incorrect trials. (B) Investigation approach index (I.A.I.) for correct (purple) and incorrect (green) trials. Thick lines and shaded region are

Figure 10 continued on next page
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Lockery, 2011). In contrast, other organisms, such as flying insects, often operate in a highly turbu-

lent regime where concentration gradients are not reliably informative (Crimaldi et al., 2002;

Murlis et al., 1992; Riffell et al., 2008). By design, mice in our task operate in an intermediate

regime, where turbulent odor plumes close to the ground form noisy gradients (Gire et al., 2016;

Riffell et al., 2008). By varying the absolute concentration and the concentration difference between

the two sides, we tested whether performance in this regime is guided or gated by odor. Because

behavior varies with the gradient and not the absolute concentration (Figure 2C–E), we have shown

that mice are guided by gradient cues in this regime. Further, performance is higher when the mice

sample both sides of the midline, suggesting that they sense the gradient by comparing sniff

sequences across time.

Our naris occlusion experiments demonstrate that performance is statistically indistinguishable

with naris occlusion, suggesting that stereo olfaction does not play a major role in our task. This find-

ing contrasts with previous studies of olfactory navigation in a different regime: following a deposi-

tional odor trail. In these studies, stereo manipulations had small but significant effects on

performance, and led to changes in movement strategy (Jones and Urban, 2018; Khan et al.,

2012). Importantly, a study of olfactory search in moles showed that stereo reversal did not affect

navigation at a distance from the target, but reversed turning behavior in the target’s immediate

vicinity (Catania, 2013). These results suggest that stereo cues may be informative near a source,

where gradients are steep, but that stereo cues play less of a role at a greater distance from the

source where gradients are more shallow. In this more distant condition, serial-sniff comparisons

have been hypothesized as a potential sensory computation for odor gradient following Cata-

nia, 2013. We propose that our task design, in which mice must commit to a side at a distance from

the source, forces mice out of the stereo regime and into the serial-sniff comparison regime. Neu-

rons sensitive to sniff-to-sniff odor concentration changes have been observed in the olfactory bulb

of head-fixed mice (Parabucki et al., 2019), providing a potential physiological mechanism for this

sensory computation.

On the other hand, physiological mechanisms revealed in head-fixed mice may not generalize to

the freely moving search condition. The external stimulus obtained by moving the nose through a

noisy gradient differs dramatically from the square odor pulses delivered during head-fixed or odor-

poke olfactory tasks. Further, the sniff statistics we observe in our mice are qualitatively faster than

those reported in head-fixed mice under most conditions (Bolding and Franks, 2017;

Shusterman et al., 2011; Wesson et al., 2009). One exception is that mice sniff fast in response to

a novel odor (Wesson et al., 2009). Such fast stimulation impacts the responsiveness of olfactory

sensory neurons (Esclassan et al., 2012; Ghatpande and Reisert, 2011; Verhagen et al., 2007). In

addition to the temporal properties of odor transduction, short- and long-term synaptic and network

plasticity mechanisms will influence the olfactory bulb’s responses during fast sniffing (Beshel et al.,

2007; Dı́az-Quesada et al., 2018; Gupta et al., 2015; Jordan et al., 2018; Mandairon and Linster,

2009; Patterson et al., 2013; Zhou et al., 2020). Without tapping into the fast sniffing regime, the

understanding we can gain from head-fixed studies in olfaction will be incomplete at best. In the

Figure 10 continued

mean ± s.e.m., thin lines are individual mice. (C) Difference in I.A.I. between correct and incorrect trials along the longitudinal axis (2.5 cm bins, n = 9).

Thick line is the across-mouse mean difference, thin gray lines are 1000 permutations in which correct and incorrect trial labels were scrambled. (D)

Investigation occupancy along the lateral axis, within the transition zone (5–10 cm longitudinal) for correct and incorrect trials. Thick lines and shaded

region are mean ± s.e.m., thin lines are individual mice. (E) Approach occupancy along the lateral axis, within the transition zone (5–10 cm longitudinal)

for correct and incorrect trials. Thick lines and shaded region are mean ± s.e.m., thin lines are individual mice. (F) I.A.I. along the lateral axis, within the

transition zone (5–10 cm longitudinal) for correct and incorrect trials. Thick lines and shaded region are mean ± s.e.m., thin lines are individual mice. (G)

Difference in investigation occupancy between correct and incorrect trials along the lateral axis, within the transition zone. Thick blue line is the across-

mouse mean difference, thin blue lines are 1000 permutations in which correct and incorrect trial labels were scrambled. (H) Difference in approach

occupancy between correct and incorrect trials. Thick orange line is the across-mouse mean difference, thin orange lines are 1000 permutations in

which correct and incorrect trial labels were scrambled. (I) Difference in I.A.I. between correct and incorrect trials. Thick orange line is the across-mouse

mean difference, thin orange lines are 1000 permutations in which correct and incorrect trial labels were scrambled.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Occupancy maps indicate an advantage for investigation of both sides for both stay trials and switch trials.
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future, it will be necessary to complement well-controlled reductionist behavioral paradigms with

less-controlled, more natural paradigms like ours.

Mice execute a strategic behavioral program when searching, synchronizing fast sniffing with

three-dimensional head movements at a tens of milliseconds timescale. It has long been known

that rodents investigate their environment with active sniffing and whisking behaviors

(Kepecs et al., 2006; Wachowiak, 2011; Welker, 1964). More recent work has established that

under some conditions sniffing locks with whisking, nose twitches, and head movement on a

cycle-by-cycle basis (Kurnikova et al., 2017; Moore et al., 2013; Ranade et al., 2013). Sniffing

also synchronizes with brain oscillations not only in olfactory regions, but also in hippocampus,

amygdala, and neocortex (Karalis and Sirota, 2018; Kay, 2005; Macrides et al., 1982; Vander-

wolf, 1992; Yanovsky et al., 2014; Zelano et al., 2016). Respiratory central pattern generators

may coordinate sampling movements to synchronize sensory dynamics across modalities with

internal brain rhythms (Kleinfeld et al., 2014). Further, locomotor and facial movement, which

are often synchronized to respiration, drive activity in numerous brain regions, including primary

sensory areas (McGinley et al., 2015; Musall et al., 2019; Niell and Stryker, 2010;

Stringer et al., 2019). Why are respiration and other movements correlated with activity in

seemingly unrelated sensory regions? In the real world, sensory receptors operate in closed loop

with movement (Ahissar and Assa, 2016; Gibson, 1966). Consequently, sensory systems must

disambiguate self-induced stimulus dynamics from changes in the environment. Further, active

sampling movements can provide access to sensory information that is not otherwise available

to a stationary observer (Gibson, 1962; Schroeder et al., 2010; Yarbus, 1967). Widespread

movement-related signals may allow the brain to compensate for and capitalize on self-induced

stimulus dynamics (Poulet and Hedwig, 2006; Sommer and Wurtz, 2008; Sperry, 1950;

von Holst and Mittelstaedt, 1950; Webb, 2004). Our work advances understanding of how

sensation and movement interact during active sensing.

Rigorously quantifying the behavior of freely moving animals is more feasible than ever, thanks to

recent developments in machine vision, deep learning, and probabilistic generative modeling

(Datta et al., 2019; Gomez-Marin et al., 2014; Mathis and Mathis, 2020), as our work shows. In

particular, the motifs we have defined provide a compact description of the behavior, while still cap-

turing the idiosyncrasies of individual mice. Importantly, these motifs can be grouped into two

larger-scale behavioral states that we putatively call ‘investigation’ and ‘approach’. Two-state search

strategies are common across phylogeny (Bargmann, 2006; Berg, 2000; Kennedy and Marsh,

1974; Lockery, 2011; van Breugel and Dickinson, 2014; Vickers and Baker, 1994). In smaller

organisms, state switches have provided a useful behavioral readout for understanding the neural

mechanisms of odor-guided behavior (Bi and Sourjik, 2018; Larsch et al., 2015; Baker et al.,

2018). Here, we have shown that where switches between investigation and approach occur in allo-

centric space can reveal the location of informative features in an olfactory scene. The transition

points between ‘investigation’ and ‘approach’ serve as a principled template against which to com-

pare neural activity. Our work thus establishes a framework for studying neural mechanisms of active

sensing in an unrestrained mammal.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm Bonsai Open Ephys
Lopes et al., 2015

Visual reactive programming

Software, algorithm Deeplabcut The Mathis Lab of Adaptive
Motor Control
Nath et al., 2019

Animal pose estimation

Software, algorithm Pyhsmm Matthew Johnson,
Johnson et al., 2013a and Johnson et al., 2013b

Bayesian inference in
HSMMs and HMMs

Custom-written task control, analysis, and visualization code is available at https://github.com/

SmearLab/Freely-moving-olfactory-search (Findley et al., 2021).
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Animals: housing and care
All experimental procedures were approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of Oregon and are compliant with the National Institutes of Health Guide

to the Care and Use of Laboratory Animals. C57BL/6J mice (2–14 months old) from the Terrestrial

Animal Care Services (TeACS) at University of Oregon (19 males, 7 females) were used for behavioral

experiments. Mice were housed individually in plastic cages with bedding and running wheels pro-

vided by TeACS. Mice were fed standard rodent chow ad libitum and were water-restricted, receiv-

ing a daily allotment (1–1.5 mL) of acidified or chlorinated water. Animal health was monitored daily,

and mice were taken off water restriction if they met the ‘sick animal’ criteria of a custom IACUC-

approved health assessment.

Behavioral assay design
Arena and task structure
Mice were trained to perform a two-choice behavioral task where they must locate an odor source

for a water reward. This 15 � 25 cm behavioral arena was largely custom-designed in lab (all designs

available upon request). The behavioral arena contains a custom-designed and 3D-printed honey-

comb wall through which continuous clean air is delivered to the arena and a latticed wall opposite

to the honeycomb allowing airflow to exit the arena. Two odor tubes (Cole-Parmer Instrument Com-

pany, #06605-27) are embedded inside the honeycomb wall and consistently deliver either clean or

odorized air. There are three nose pokes in the arena: one trial initiation poke and two reward

pokes. The initiation poke is embedded inside the latticed wall (where airflow exits) and is poked to

initiate trials. The left and right reward pokes are embedded in the left and right arena walls against

the honeycomb airflow delivery and are used for water reward delivery. Mice initiate odor release by

entering the initiation poke. If the mouse locates the odor source successfully (by entering the quad-

rant of the arena containing the correct odor port), water (~6–8 mL) is available at the corresponding

nose poke. An ITI of 4 s is then initiated. If the mouse goes to the incorrect side, water is not made

available and they must wait an increased ITI of 10 s.

Odor delivery
Odor is delivered to the arena using two custom-designed and built olfactometers. For a single

olfactometer, air and nitrogen are run through separate mass flow controllers (MFCs) (Alicat Scien-

tific, #MC-100SCCM-RD) that can deliver 1000 mL/min and 100 mL/min at full capacity, respectively.

We can use these MFCs to control the percentage of total nitrogen flow (100 mL/min) that runs

through liquid odorant. Consequently, we can approximately control the amount of odor molecules

in the resulting odorized air stream. Total flow is maintained at 1000 mL/min (e.g., if we are deliver-

ing 80 mL/min of nitrogen, we will deliver 920 mL/min of air). Nitrogen MFC output is directed

through a manifold (NResearch Incorporated, #225T082) with embedded solenoids that direct flow

to one of four possible vials. These vials contain odorant diluted in mineral oil or are empty. To odor-

ize air, nitrogen is directed through a vial containing liquid odorant. The nitrogen aerosolizes the

odorant and combines with airflow MFC output at the exit point of the manifold. If nitrogen is

directed through an empty vial, unodorized nitrogen will combine with airflow at the exit point. The

resulting combined flow of air and nitrogen is then directed to a final valve (NResearch Incorporated,

#SH360T042). Odorized air continuously runs to exhaust until this final valve is switched on at which

point clean air is directed to exhaust and odorized air to the behavioral assay. Therefore, we can

control the percentage of odorized flow (using the MFCs), the presence or absence of odorized flow

(using the vials and solenoids), and the flow of odorized air to the assay (using the final valve). There

are two olfactometers (one for each odor port), which are calibrated weekly to match outputs using

a PID.

Video-tracking
We use a Pointgrey Fly Capture Chameleon 3.0 camera (FLIR Integrated Imaging Solutions Inc,

#CM3-U3-13Y3C) for video-tracking. We capture frames at 80 Hz at 1200 � 720 pixel resolution. All

real-time tracking is executed using a custom Bonsai program. We isolate the mouse’s centroid by

gray-scaling a black mouse on a white background and finding the center of the largest object. We

track head position by applying red paint on the mouse’s implant between the ears and thresholding
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the real-time HSV image to identify the center of the largest red shape. We can then identify nose

position by calculating the extremes of the long axis of the mouse shape and isolating the extreme

in closer proximity to the head point. These three points are sent to Python at 80 Hz for real-time

tracking in our assay. We use this real-time tracking to determine successful odor localization; if the

mouse enters the quadrant of the arena that contains the correct odor port, it has answered cor-

rectly. Bonsai is an open-source computer vision software available online (Lopes et al., 2015), and

our custom code is available upon request.

For more rigorous behavioral analysis, we increased our tracking accuracy by using the open-

source tracking software Deeplabcut (Mathis et al., 2018; Mathis and Mathis, 2020). All Deeplab-

cut tracking occurred offline following experimentation.

Sniff recordings
We record sniffing using intranasally implanted thermistors (TE Sensor Solutions,

#GAG22K7MCD419; see Materials and methods: Surgical Procedures). These thermistors are

attached to pins (Assmann WSW Components, #A-MCK-80030) that can be connected to an over-

head commutator (Adafruit, #736) and run through a custom-built amplifier (Texas Instruments,

#TLV2460, amplifier circuit design available upon request).

Software
All behavioral experiments were run using custom code in Python, Bonsai, and Arduino. Behavioral

boards designed at Janelia Research Farms that use Arduino software and hardware were used to

control all hardware. Bonsai was used to execute real-time tracking of animals, and Python was used

to run the assay, communicate with Arduino and Bonsai, and save data during experiments. All pro-

grams used are open source, and all custom code is available upon request.

Surgical procedures
For all surgical procedures, animals were anesthetized with 3% isoflurane; concentration of isoflurane

was altered during surgery depending on response of the animal to anesthesia. Incision sites were

numbed prior to incision with 20 mg/mL lidocaine.

Thermistor implantation
To measure respiration during behavior, thermistors were implanted between the nasal bone and

inner nasal epithelium of mice. Following an incision along the midline, a small hole was drilled

through the nasal bone to expose the underlying epithelium ~2 mm lateral of the midline in the nasal

bone. The glass bead of the thermistor was then partially inserted into the cavity between the nasal

bone and the underlying epithelium. Correct implantation resulted in minimal damage to the nasal

epithelium. The connector pins were fixed upright against an ~3 cm headbar (custom-designed and

3D printed) placed directly behind the animals’ ears and the thermistor wire was fixed in place using

cyanoacrylate. The headbar was secured against a small skull screw (Antrin Minature Specialties,

#B002SG89OI) implanted above cerebellum. A second skull screw was placed at the juncture of the

nasal bones to secure the anterior portion of the implant. All exposed skull and tissue were secured

and sealed using cyanoacrylate. At the end of surgery, a small amount of fluorescent tempera red

paint (Pro Art, #4435-2) was applied to the center of the headbar for tracking. Immediately following

surgery, animals received 0.1 mg/kg buprenorphine followed by 3 days of 0.03 mg/kg ketoprofen.

All but nine mice were implanted prior to training. Mice that were implanted post-training were

taken off water restriction at least 2 days prior to surgery and were not placed back on water restric-

tion for at least 1 week following all analgesic administration.

Naris occlusion
To test the necessity of stereo olfaction as a sampling strategy, we occluded the nostrils of C57BL/

6J mice using 6-0 gauge surgical suture (SurgiPro, #MSUSP5698GMDL). Mice were given 0.03 mg/

kg ketoprofen and topical lidocaine on the nostril prior to induction. Suture was either pulled

through the upper lip of the nostril and maxillary region to fully occlude the desired nostril or looped

at the upper lip of the nostril for a sham stitch. Commercially available VetBond was applied to pro-

tect the suture knot. To ensure full occlusion, a small water droplet was placed on the occluded
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nostril. The absence of bubbles or seepage indicated a successful occlusion. Occlusion was retested

in the same manner directly before each experimental session. All stitches were removed within a

week of application, and animals were stitched a total of three times per nostril.

Behavioral training
All mice were trained to locate an odor source from one of two possible sources in the olfactory

arena. Mice were removed from training and future experiments if they lost sniff signal or did not

exceed 50 trials/perform above 60% correct in 15 sessions. The training process was divided into

four primary stages.

Water sampling
Mice were trained to alternate between the three pokes in the behavioral arena. Water (~5–8

mL) was made available at the nose pokes in the following order: initiation port, left reward

port, initiation port, and right reward port (repeat). Mice were trained in this task for 30 min

per session until the mouse completed 70 iterations. This took mice 2–9 sessions. Data are only

shown for 19 mice because earlier iterations of the system did not save training data.

Odor association
Mice were trained in the same sequence as water sampling. However, in odor association, water

availability was removed from the initiation poke, and odor was released from whichever side water

was available. Therefore, the mouse must initiate water availability by poking the initiation poke and

then is further guided to the correct reward port by odor release. This task taught mice to initiate tri-

als using the initiation poke and to associate odor with reward. However, in this step, odor is not

required for reward acquisition as the task alternates left and right trials. Mice were trained in this

task for 30 min per session until the mouse completed 70 iterations. This took mice 1–5 sessions.

Data are only shown for 19 mice because earlier iterations of the system did not save training data.

100:0
Mice were given the same task as odor association, but with odor now randomly being released

from the left or right odor port following an initiation poke. 10% of these trials were randomly 0:0

condition trials. To correctly answer, animals had to enter the quadrant of the arena (as tracked by

the overhead camera) where odor was being released. If they answered correctly, water was made

available at the reward port on the corresponding side. If they answered incorrectly, water was not

made available and the mouse received an increased ITI. Mice were trained in this task for 40 min

per session until they exceeded 80% accuracy, which took 1–4 sessions (n = 26).

80:20
When trials were initiated in this task, odor was released from both odor ports, but at differing con-

centrations. The animal had to enter the quadrant containing the odor port releasing the higher con-

centration. In this case, 80 means that the nitrogen MFC was set to 80 mL/min on one olfactometer

(see Materials and methods: behavioral assay). Therefore, one odor port would release roughly 80%

of the total possible odorant concentration. If one olfactometer was set to 80, then the other olfac-

tometer would be set to 20 in this condition. 10% of these trials were randomly 0:0 condition. Mice

were trained in this task for 40 min per session, taking 1–9 sessions to exceed 60% performance

(n = 24).

Behavioral experiments
Variable DC, Constant |C|
This experiment tested how performance and sampling strategy changes with task difficulty. In this

experiment, mice performed a two-choice behavioral task where they located an odor source for a

water reward at varying concentration differences between the two ports. This experiment inter-

leaved several possible conditions: 100:0 (all odor released from one port or the other), 80:20 (odor

is released from both ports at different concentrations: 80% of the total possible airborne concentra-

tion and 20% of the total possible airborne concentration), and 60:40 (60% and 40%). Additionally,

there was a control condition where all system settings were the same as the 80:20 condition, but
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nitrogen flow was directed through a clean vial so that the final flow was not odorized. 10% of the

total number of trials were the 0:0 condition. Mice ran 40 min experimental sessions and totaled 5–

50 sessions (n = 19). These experiments were run with 1% liquid dilution of pinene.

Novel odorant
This experiment tested how mice generalized our olfactory search task. A subset of mice were run

with 1% liquid dilution of vanillin, which, unlike pinene, does not activate the trigeminal system

(n = 3).

Constant DC, Variable |C|
This experiment tested if the animals use a thresholding strategy based on a fixed concentration

threshold to solve the localization task. We ran this experiment using air dilution delivering the con-

centration ratios 90:30 and 30:10 interleaved randomly (n = 5). Mice ran 40 min sessions, and we

analyzed data from the first session.

Naris occlusion
This experiment tested the necessity of stereo olfaction in our localization task. Mice were run in the

interleaved experiment (see above) initially. However, after observing no differences between con-

centration groups, we continued this experiment running mice in the 80:20 and 0:0 conditions only.

Mice were run in one of five categories: left occlusion, left sham stitch, right occlusion, right sham

stitch, and no stitch (see Materials and methods: surgical procedures). Mice ran 40 min experimental

sessions and totaled 5–30 sessions (n = 13). Stitches were always removed after 4 days. These

experiments were run using 1% pinene dilutions.

Mapping the olfactory environment
We used a PID (Aurora Scientific Inc, #201A) to capture real-time odor concentration at a grid of 7 �

5 sampling locations in the assay. Using vials of 50% liquid dilution of pinene, we captured ~15 two-

second trials per sampling point. Odor maps were generated using the average concentration

detected across all trials at each location. These maps were smoothed via interpolation across space.

Discriminability maps in Figure 1—figure supplement 2C, D were calculated with ROC analysis on

the PID data (Green and Swets, 1966). To generate the distributions, each 2 s trial was divided into

25 ms chunks (approximately the mean inhalation duration during the task). For each space bin, the

mean value of each 25 ms chunk was compiled into a distribution of odor concentration values for

right and left trials (the different gradient conditions were pooled for this analysis). To map concen-

tration gradient discriminability, 25 ms samples from each bin were assembled into a pseudosample,

such that each sampling position had a concentration value. The gradient angle in each bin of this

pseudosample was then calculated (imgradient function in MATLAB) and compiled into a distribu-

tion of angles for right and left trials (the different gradient conditions were pooled for this analysis).

For both absolute concentration and gradient maps, the area under the ROC curve was calculated

for each bin, scaled to between �1 and 1, and absolute valued, and these were assembled into a

map and smoothed. Values are thresholded and shown at low bit depth (eight grayscale values) to

facilitate perception of where the auROC values are highest.

Data analysis
Analyses of odormaps, sniffing, DLC tracking, and motif sequences were performed in MATLAB.

Inhalation and exhalation times were extracted by finding peaks and troughs in the temperature sig-

nal after smoothing with a 25 ms moving window. Sniffs with duration less than the 5th percentile

and greater than the 95th percentile were excluded from analysis. For alignment of movement with

sniffing, tracking and motif sequences were shifted forward in time by 25 ms (two frames), the tem-

poral offset revealed by video calibration (Figure 1).

Figure 1
Odormaps were visualized by smoothing the PID sampling grid with a Gaussian and colored using

Cubehelix (Green, 2011).
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Figure 2
Sessions where mice performed less than 60% correct on 80:20 (90:30 for Constant DC, Variable |C|)

were less than 80 trials or had any missing folders or files were excluded. Trials longer than 10 s

were excluded. Percent correct was calculated by dividing the correct trials by total trials in a single

session and was averaged across all sessions, all mice. Trial duration was measured between nose

poke initiation and reward poke and was averaged across all trials, all sessions, all mice. Tortuosity

was measured by dividing the total path length by the shortest possible path length and was aver-

aged across all trials, all sessions, all mice.

Statistical tests were performed in Python using the scipy package (Peterson et al., 2001). A

binomial test was used to test statistical significance of above-chance performance. Wilcoxon rank-

sum tests were used for all group comparisons with pairwise comparisons for more than two groups.

Two group comparisons were tested using all trials pooled together, and pairwise comparisons of

three groups or more were tested across mice using individual mouse averages.

Figure 3
Occupancy and sniff rate colormaps were generated by down-sampling the tracking data to a 50 �

30 grid of bins (0.5 cm2). Occupancy colormaps are a 2D histogram of the nose position data. Sniff

rate histograms were generated by dividing the sniff count in each position bin by the corresponding

bin in the occupancy histogram. Both histograms were Gaussian-smoothed and colored using Cube-

helix (Green, 2011). Grand means are shown in Figure 3F, G, while individual mouse occupancy

heatmaps are shown in Figure 4. Maps were colored using Cubehelix (Green, 2011).

Figures 4 and 5
Nose speed, yaw velocity, and Z-velocity were calculated from the three-point position time series

generated by Deeplabcut. For analysis, a 400 ms window centered on each inhalation time was

extracted from the kinematic time series. Colormaps in Figure 4 show traces surrounding individual

sniffs, while colormaps were generated using Bluewhitered (Childress, 2020). For within-trial sniffs,

only those inhaled before the decision line were included. The ITI sniffs are taken from the time of

reward port entry to the time of the first initiation port entry in the ITI. For cross-correlation and

coherence analysis, we aligned the time series of sniffing and kinematic parameters from the entire

trial or from the interval between reward and initiation port in the ITI. Tracking glitches were

excluded by discarding trials or ITIs that contained frames with nose speed above a criterion value

(100 pixels per frame).

Figure 6
Average motif shapes were generated from the mean positions of the nose, head, and body points

from the first eight frames of every instance of a given motif as determined by the AR-HMM. Decod-

ing analysis is described in the following section.

Figure 7
The transition probability matrix was clustered by minimizing Euclidean distance between rows. For

analyses separating investigation and approach sniffs, sniffs were defined as investigation or

approach sniffs based on the state at the inhalation time. Colors for investigation and approach

were selected from the Josef Albers painting, Tautonym, (B) (Albers and Tautonym, 1944).

Figure 8
Figures are generated by motif-onset triggered averages of inhalation times determined as

described above. Figure 8B, C are the grand mean of the motif onset-triggered average for

each motif. Maps were colored using Cubehelix (Green, 2011). Sniff phase (relative time in sniff)

was determined by dividing the motif onset latency from inhalation by the total duration (i.e.,

inhalation time to inhalation time) of each sniff. Modulation index was calculated as the differ-

ence between maximum and minimum instantaneous sniff rate, divided by the sum

max� min=maxþ minð Þ.
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Figure 9, Figure 9—figure supplement 1, Figure 10, Figure 10—figure
supplement 1
Investigation and approach occupancy maps were generated by down-sampling the tracking data to

a 25 � 15 grid of bins (1 cm2). Occupancy maps are a 2D histogram of the nose position data, com-

piled separately for investigation and approach frames (see below for details of ARHMM analysis). In

plots where the data are reoriented with respect to the choice, the lateral axis of all right-choice tri-

als has been flipped so that the trajectories always end on the left side (top side in the displayed

occupancy maps). Both histograms were normalized to the total occupancy in a given bin (i.e.,

investigation + approach), Gaussian-smoothed, and merged and colored using a scheme adapted

from fluorescence microscopy (Geissbuehler and Lasser, 2013). Grand means (n = 9) are shown in

Figures 9A, B and 10A, and S16, while individual mouse mean occupancy maps are shown in Fig-

ure 9—figure supplement 1. I.A.I. is calculated as the difference between investigation and

approach occupancies over their sum for a given bin. I.A.I. is taken from histograms that are the pro-

jection of the 2D maps onto the longitudinal or lateral axes. The ‘transition zone’ is defined as the

region between 5 and 10 cm from the longitudinal axis origin (i.e., the initiation port), and lateral

axis histograms are taken from within this region in Figure 10D–F and Figure 10—figure supple-

ment 1. Correct-incorrect occupancy and index differences are grand mean of the individual mouse

differences in Figure 10C, G–I and Figure 10—figure supplement 1. These differences are evalu-

ated statistically against a null distribution generated by scrambling the correct and incorrect trial

labels 1000 times and re-running this analysis. Importantly, these shuffles are performed within mice

before taking the post-shuffle grand means, so that these null distributions incorporate both within-

mouse and across-mouse variability.

Sniff synchronization
Sniff cycles were compared with kinematics to determine the extent of movement modulation at

individual sampling points. Individual sniffs were cross-correlated with each kinematic signal (i.e.,

nose speed) at �200 ms from inhalation onset to +200 ms from inhalation onset. To further deter-

mine synchrony between the two signals, we measured the coherence of signal oscillation between

sniff signals and individual kinematic measurements at �200 ms from inhalation onset to +200 ms

from inhalation onset.

Auto-regressive hidden Markov model
Let xt denote the six-dimensional vector of nose-head-body coordinates at video frame t (sampled

at 80 Hz), with components xnose; ynose; xhead; yhead; xbody; ybody
� �

. We fit an AR-HMM to mouse trajec-

tory data, x
ið Þ
t

n o

, across trials (indexed by i) from 13 out of 15 mice (two mice were excluded a priori

due to low task performance). These mice performed olfactory search under the following experi-

mental conditions: Variable DC, Constant |C| (nine mice); naris occlusion (seven mice); and Constant

DC, Variable |C| experiments (five mice).

The generative view
Viewed as a generative model (that generates simulated data), the AR-HMM has two ’layers’: a layer

of hidden discrete states (corresponding to discrete movement motifs) and an observed layer that is

the continuous trajectory xt. We denote the temporal sequence of discrete states by zt. In each

time step, zt 2 1; 2; . . . ; Sf g, that is, it is one of an S number of states, or movement motifs. The dis-

crete hidden states evolve in time according to a Markov chain: going from time step t to t + 1, the

discrete state may change to another state according to a transition probability matrix pz1;z2 , which

denotes the conditional probability of switching to z2 having started in z1. The probability distribu-

tion over the initial state, zt¼1, of the Markov chain at the start of each trial was taken to be the uni-

form distribution.

Now suppose for time steps t1 to t2 (inclusive) the discrete layer remained in state z. The continu-

ous or auto-regressive (AR) part of the model dictates that, over this time interval, the continuous

trajectory, xt, evolves according to a linear AR process. The parameters of this AR process can be

different in different states or motifs, z. In other words, xt is governed by
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xt ¼ Azxt�1 þ bzþ "t: t1 � t� t2

where Az is a 6 � 6 matrix and b is a 6 � 1 vector, and the noise vector "t is sampled from the multi-

variate zero-mean Gaussian distribution N 0;Qzð Þ, where Qz is a 6 � 6 noise covariance matrix. More-

over, the parameters Az, bz, and Qz depend on the discrete state z, and in general are different in dif-

ferent discrete states. The simple stochastic linear dynamics described by Equation (1) can describe

simple motions of the mouse, such as turning left/right, dashing towards a certain direction, freezing

(when Az is the identity matrix and bz is zero), etc. The switches between these simple behaviors

allow the model to generate complex trajectories.

The AR-HMM is an example of a model with latent variables, which in this case are the discrete

state sequence z
ið Þ
t in each trial. The model, as a whole, is specified by the set of parameters

(p; Azf g; bzf g; Qzf g), which we will denote by �. For a d-dimensional trajectory (d = 6 here) and S

states, comprises S S� 1ð Þ þ S d2 þ d þ d d þ 1ð Þ=2ð Þ ¼ S S� 1þ 3d d þ 1ð Þ=2ð Þ parameters.

Model fits
Models with latent variables are often fit using the expectation-maximization (EM) algorithm, which

maximizes the likelihood of the model in terms of the parameters � � p; Azf g; bzf g; Qzf gð Þ for a given

set of observed data x
ið Þ
t

n o

. In this work, we did not use the EM algorithm, but adopted a fully

Bayesian approach in which both the hidden variables and the model parameters were inferred by

drawing samples from their posterior distribution (Wiltschko et al., 2015). The posterior distribution

combines the model likelihood and Bayesian priors imposed on its parameters, according to Bayes’

rule. If we denote the joint likelihood of observed trajectories, x
ið Þ
t

n o

, and the latent variables, z
ið Þ
t

n o

,

by P x
ið Þ
t ; z

ið Þ
t

n o

j�
� �

and the prior distribution over model parameters by P �ð Þ, then up to normaliza-

tion, the joint posterior distribution of latent variables and model parameters is given by

P z
ið Þ
t

n o

; �j x
ið Þ
t

n o� �

/ P x
ið Þ
t ; z

ið Þ
t

� �n o

j�
� �

P �ð Þ:

For the AR-HMM, the (logarithm of the) joint log-likelihood is given by

logP x
ið Þ
t ; z

ið Þ
t

n o

j�
� �

¼
X

i

X

Ti

t¼2

logp
z
ið Þ
t�1

;z
ið Þ
t

þ logN x
ið Þ
t jA

z
ið Þ
t

x
ið Þ
t�1

þ b
z
ið Þ
t

;Q
z
ið Þ
t

� �h i

:

where Ti is the length of trial i, and we use the notation N xj�;Qð Þ ¼ e�
1

2
x��ð ÞTQ�1 x��ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi

2pQj j
p

to

denote the density at point x of a multivariate Gaussian with mean vector m and covariance matrix

Q.

We imposed loose conjugate priors on the model parameters, which were factorized over the

parameters of the AR process, Azf g; bzf g; Qzf gð Þ, in different discrete states z, and the different rows

of the Markov transition matrix, p. On the rows of p, we imposed Dirichlet distribution priors with

uniform distribution means and concentration hyperparameter a, which was set to 4. We imposed

matrix normal inverse Wishart priors on the AR parameters, independently for different discrete

states. Under this prior, the noise covariance Qz has an inverse Wishart distribution with a ’scale

matrix’ hyperparameter, which was set to the d � d ( = 6 � 6) identity matrix, and a ’degrees-of-

freedom’ scalar hyperparameter set to d + 2 = 8. Conditional on Qz, the remaining AR parameters,

Az; bzð Þ, have a joint multivariate normal distribution under the prior, which can be specified by the

prior mean and joint prior covariance matrix of Az and bz. The prior means of Az and bz were set to

the d � d identity matrix and the d-dimensional zero vector, respectively, while the prior covariance

matrix of the concatenation Az; bzð Þ was given by the tensor product of Qz and the (d + 1) � (d + 1)

( = 7 � 7) identity matrix (equivalently, under this prior, bz and different columns of Az are indepen-

dent and uncorrelated, while each of these column vectors has a prior covariance equal to the [prior]

AR noise covariance, Qz).

Bayesian model inference was carried out by sampling from (instead of maximizing) the joint

posterior distribution of the model parameters and latent state variables conditioned on the

observed trajectory data (Equation 2). We did this by Gibbs sampling (an example of Markov
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chain Monte Carlo; not to be confused with the Markov chain in the AR-HMM), which works in

a manner conceptually similar to the EM algorithm: it switches between sampling z
ið Þ
t in all trials,

conditioned on previously sampled parameters, and then sampling the parameters � given the

previous sample of z
ið Þ
t

n o

. To carry out this model inference procedure, we used the Python

package developed by M.J. Johnson and colleagues, publicly available at https://github.com/

mattjj/pyhsmm (Johnson et al., 2013a).

We ran the Gibbs sampler for 300 iterations and burned the first 200 samples, retaining 100. We

used the remaining samples to obtain the posterior probabilities of hidden discrete states at each

time step of each trial (by calculating the frequency of different state in that time step and trial,

across the retained Gibbs samples), as well as posterior expectation of the model parameters (by

calculating their averages over the retained Gibbs samples). We refer to the AR-HMM with parame-

ters given by these latter posterior expectations as the ‘fit model’.

Model selection
We fit AR-HMM’s with different numbers of states (motifs), S, to mouse trajectory data pooled

across animals. To evaluate the statistical goodness of fit of these fit model and select the best S

(the number of states or motifs), we evaluated the log-likelihoods of fit models on trajectory data

from a held-out set of trials, not used for model fitting. The corresponding plot of log-likelihoods is

shown in Figure 6F. As seen, the log-likelihood keeps increasing with S, up to S = 100. This shows

that, up to at least S = 100, additional motifs do have utility in capturing more variability in mouse

trajectories. These variabilities may include differences in movement across mice, as well as move-

ment variations in the same mouse but across different trials or different instances of the same

movement; for example, a clockwise head turn executed with different speeds in different instances

or trials. In the AR-HMM, the AR observation distribution of a given Markov state corresponds to a

very simple (linear) dynamical system that cannot capture many natural and continuous variations in

movement, such as changes in movement speed. Nevertheless, AR-HMM models with higher S can

capture such variations with more precision by specializing different discrete Markov states, with dif-

ferent AR distributions, to movement motifs of different mice, or, for example, to capture different

speeds of the same qualitative movement motif.

The goal for this modeling was to give a compact description of recurring movement features

across animals and conditions, suitable for visualization and alignment. For these purposes, the

goodness of fit did not provide a suitable criterion because the log-likelihood plots did not peak or

plateau even at very large numbers of states. Guided by visual inspection, we thus chose the model

with S = 16 for the main figures (Figures 6–8). Although this was a somewhat arbitrary choice, we

show that the findings in Figures 6–8 do not depend on the choice of S – models with S = 6, 10, or

20 gave equivalent results (Figure 6—figure supplements 2–4).

MAP sequences
The Gibbs sampling algorithm that we used for model inference yields (time-wise marginal) maxi-

mum a posteriori (MAP) estimates of the latent variables z
ið Þ
t

n o

, as follows. Using the Gibbs samples

for the latent variables, we can estimate the posterior probability of the mouse being in any of the S

states in any given time step of a given trial. We made MAP sequences by picking, at any time step

and trial, the state with the highest posterior probability. The inferred MAP motifs tended to have

high posterior probability, which exceeded 0.8 in 66.2% of all time steps across the 17,195 trials in

the modeled dataset.

Decoding analysis
We decoded experimental conditions and animal identities from single-trial MAP motif sequences

inferred using the AR-HMM. Specifically, we trained multi-class decoders with linear decision bound-

aries (linear discriminant analysis) to decode the above categorical variables from the single-trial

empirical state transition probability matrices derived from the MAP sequence of each trial. If
^
z
ið Þ
t is

the motif MAP sequence for trial i, the empirical transition probability,
^

p
ið Þ
a;b, from state a to

state b a; b 2 1; . . . ;Kf gð Þ, for that trial was calculated by
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^
p

ið Þ
a;b �

n
ið Þ
a;b

PK
c¼1

n
ið Þ
a;c

:

n
ið Þ
a;b �

X

T ið Þ�1

t¼1

I ẑt ¼ að ÞI ^ztþ1 ¼ bð Þ:

where T ið Þ is the length of trial i, and I �ð Þ is an indicator function, returning 1 or 0 when its argument

is true or false, respectively.

We used the decoder to either classify experimental condition or mouse identity, in different trials

(Figure 6D, E). For decoders trained to classify the trials’ experimental condition, we used pooled

data across mice. For decoders trained to classify mouse identity, we only used data from the 80:20

odor condition. Data was split into training and test dataset in a stratified fivefold cross-validation

manner, ensuring equal proportions of trials of different types in both datasets. The trial type was

the combination of left vs. right decision, experimental condition, and mouse identity.

To calculate the statistical significance of decoding accuracies, we performed an iterative shuffle

procedure on each fold of the cross-validation. In each shuffle, the training labels that the classifier

was trained to decode were shuffled randomly across trials of the training set, and the classifier’s

accuracy was evaluated on the unshuffled test dataset. This shuffle was performed 100 times to cre-

ate a shuffle distribution of decoding accuracies for each fold of the cross-validation. From these dis-

tributions, we calculated the z-score of decoding accuracy for each class in each cross-validation

fold. These z-scores were then averaged across the folds of cross-validation and used to calculate

the overall p-value of the decoding accuracy obtained on the original data.
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